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Abstract-A macroscopic yield criterion for porous solids with pressure-sensitive matrices modeled
by Coulomb's yield criterion is obtained by generalizing Gurson's yield criterion with consideration
of the hydrostatic yield stress for a spherical thick-walled shell and by fitting the finite element
results of a voided cube. From the macroscopic yield criterion, a plastic potential function for
porous solids is derived for either plastic normality or non-normality flow for pressure-sensitive
matrices. In addition. the elastic relation, an evolution rule for the plastic behavior of the matrices,
the consistency equation and the void volume evolution equation are presented to complete a set of
constitutive relations for porous solids with rate-dependent pressure-sensitive matrices. Based on
the constitutive relations. plastic flow localization is analysed for porous solids with various pressure­
sensitive dilatant matrices with power-law strain hardening or with intrinsic strain softening under
plane strain tension, axisymmetric tension and plane stress biaxial loading. Our numerical results
indicate that the non-normality of the pressure-sensitive matrices promotes localization under plane
strain tension. Under axisymmetric tension the critical strain at localization decreases significantly
as the pressure sensitivity of the matrices increases. Under plane stress biaxial loading conditions,
the pressure sensitivity of the matrices with normality retards localization significantly. However,
the pressure sensitivity of the matrices with non-normality retards localization slightly for positive
strain ratios and promotes localization slightly for negative strain ratios. Under all three deformation
modes. the strain softening coupled with a moderate amount of void volume inhomogeneity is
shown to have a dominant role in plastic flow localization.

I I:"JTRODUCTION

In contrast to the pressure-insensitive yielding assumption in classical plasticity theories,
pressure-sensitive yielding has been observed for dense metals, polymers and trans­
formation-toughened ceramics (Spitzig et al., 1975, 1976; Sternstein and Ongchin, 1969;
Rabinowitz et al., 1970; Sauer et al., 1973; Spitzig and Richmond, 1979; Reyes-Morel
and Chen, 1988). The pressure-sensitive yielding has been approximately described by
Coulomb's yield criterion, where yielding is dependent on a linear combination of the
effective shear stress and the hydros.tatic stress (Drucker and Prager, 1952). The use of
Coulomb's yield criterion is intended to model the intrinsic material flow behavior in metals
and polymers, and to model the phase transformation in ceramics. On the other hand,
inclusions, microvoids or microcracks also result in macroscopically pressure-sensitive
yielding. For example, Gurson (1975, 1977) proposed a macroscopic pressure-sensitive
yield criterion for porous materials of which the matrices are modeled by the pressure­
insensitive von Mises yield criterion.

Much of the research on plastic flow localization or shear band formation for pressure­
sensitive materials has been targeted at metallic materials and rock masses. In steels and
aluminum alloys, voids nucleate from large second phase particles at small plastic strains,
and often coalesce via void sheets consisting of voids nucleated from smaller particles; see
Cox and Low (1974) and Van Stone et al. (1974). Rudnicki and Rice (1975) analysed the
localization ofdeformation into a shear band as an instability in the constitutive description
of homogeneous deformation in pressure-sensitive dilatant materials. The analysis is motiv­
ated by the shear localization in rock masses under compressive principal stresses. The
analysis is general enough and applicable to a wide variety of pressure-sensitive dilatant
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materials. Yamamoto (1978) made the connection between the localization analysis of
Rudnicki and Rice (1975) for pressure-sensitive dilatant materials and that based on
Gurson's yield function for porous materials. Yamamoto found that it is necessary to
introduce some form of initial imperfection to obtain reasonable localization strains. Later,
Chu and Needleman (1980), Saje et al. (1982) and Pan et al. (1983) examined the effect of
non-normality flow due to void nucleation and material rate sensitivity on the growth of a
shear band from an initial imperfection based on Gurson's yield function (Gurson, 1975,
1977 ; Tvergaard, 1981, 1982) for porous materials.

In the plastics industry, it has been known for years that the addition of rubber particles
to plastics increases the fracture toughness of plastics significantly. Rubber-modified plastics
can be used as they are or as resins for composites to produce structural parts. Localization
of deformation into shear (dilatational) bands in rubber-modified plastics was studied by,
for example, Breuer et al. (1977) and Sue (1992). The shear band formation in plastics has
been studied in connection with their pressure-sensitive yielding and plastic dilatancy, for
example, in Argon et al. (1968), Bauwens (1967, 1970), Bowden and Jukes (1972) and more
recently in Jeong et al. (1994). These studies indicate the effect of pressure-sensitive yielding
and plastic dilatancy on the formation of shear band. More references on shear bands in
polymers can be found in Kinloch and Young (1983). In rubber-modified plastics such as
rubber-modified polyamide, poly(vinyl chloride) and epoxy, when subject to loading, the
rubber particles become cavitated and massive shear yielding occurs around the cavitated
particles (Ramsteiner and Heckmann, 1985; Breuer et al., 1977; Yee and Pearson, 1986).

Yee and Pearson (1986) emphasized that the rubber particles in rubber-modified
epoxies become cavitated before noticeable plastic deformation of the matrix, and cavitation
in the rubber particles is followed by massive shear yielding of the neighboring matrix. The
load-carrying capacity of the rubber particles is relatively small when compared to that of
the neighboring matrix. Therefore, the load-carrying capacity of the rubber particles may
be neglected and the volume occupied by the rubber particles can be regarded as the volume
of voids in rubber-modified plastics. Based on this viewpoint, Lazzeri and Bucknall (1993)
generalized Gurson's yield function to include the pressure sensitivity of the matrices in
porous solids and analyse the effect of pressure sensitivity on the formation of cavitated
shear bands (dilatational bands) in rubber-modified plastics. Their generalization of Gur­
son's yield function for porous solids can be regarded as qualitatively correct but without
any substantiation from either experimental or analytical evidence.

We are interested in modeling the constitutive behavior of rubber-modified plastics at
large plastic deformation and eventually examining the toughening theory for rubber­
modified plastics. The plastic zone sizes and shapes near the tips of cracks in pressure­
sensitive materials have been studied in Dong and Pan (1990), Kim and Pan (1994), and
Ben Aoun and Pan (1994). The general effect of the pressure sensitivity under plane strain
conditions is to shift the near-tip plastic deformation to the front of the crack tip. For
transformation-toughened ceramics, the pressure sensitivity for phase transformation is
quite large. Ben Aoun and Pan (1994) reported that Coulomb's phase transformation
criterion with large pressure sensitivity along with the elastic behavior after the exhaustion
of the phase transformation strain can sufficiently result in an elongated phase trans­
formation zone ahead of a crack, as shown in the experiment of Yu and Shetty (1989).

In rubber-toughened plastics, the cavitation zone and the shear yielding zone under
plane strain conditions are also located in front of the tip of a crack (Parker et al., 1990;
Pearson and Yee, 19111). Since the pressure sensitivity of the plastics is limited, it is
reasonable to speculate that the extensive shear plastic deformation ahead of the tip must
come from the additional macroscopic pressure sensitivity due to the small load-carrying
capacity of cavitated particles. In order to use finite element methods to model the observed
experimental results on the plastic zone size and shape near a crack tip and to further
understand the deformation processes near a blunted crack tip or notch tip, we must first
formulate a set of macroscopic constitutive relations for rubber-modified plastics. This set
of constitutive relations should reflect the small load-carrying capacity of rubber particles
and should be easily implemented into a finite element code. In fact, the set of constitutive
relations developed in this paper has been adopted to investigate the deformation processes
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near a blunted crack tip in rubber-modified epoxies. The computational results of the sizes
and shapes of the cavitation zone and the shear yielding zone agree well with the exper­
imental results (Jeong. 1992).

We assume that the shearing yielding of the matrices along with the cavitated rubber
particles in rubber-modified plastics should be mainly responsible for the macroscopic
plastic constitutive behavior. Because of the small load-carrying capacity of the rubber
particles. we treat the volume fraction occupied by the rubber particles as the void volume
fraction. It is well known that Coulomb's yield criterion can be used to model the plastic
behavior of plastics. Therefore, we follow the spirit of Gurson (1975, 1977) and propose a
macroscopic yield criterion for porous solids with pressure-sensitive matrices modeled by
Coulomb's yield criterion. The macroscopic yield criterion reduces to Gurson's yield cri­
terion when the matrices become pressure-insensitive and incompressible. It reduces to
Coulomb's yield criterion when the void volume fractions of porous solids decrease to zero.

Our modification of Gurson's yield criterion to take into account the pressure sen­
sitivity of the matrix is based on the solution of the hydrostatic yield stress for a spherical
thick-walled shell. However. our proposed yield criterion does not adequately include the
effect of the interaction between voids, especially at large void volume fractions. This results
from the fact that Gurson's yield criterion and the hydrostatic yield stress were obtained
for a spherical thick-walled shell model, not for a voided cube model which can be used to
take into account the void interaction. It should be noted that it is not uncommon that the
volume fraction of the rubber particles can go up to 20% in rubber-modified plastics.
Therefore, we adopt a voided cube model and use the finite element method to compute
the macroscopic stresses causing massive plastic deformation of the cube under various
multiaxialloading conditions. with the matrix being modeled as an elastic--perfectly plastic
material. The proposed yield criterion is then modified to fit the finite element results.

It is noteworthy that experiments (Spitzig et al., 1975. 1976; Spitzig and Richmond,
1979) for several steels and polymers show much lower plastic volume increases than
those predicted by the normality flow rule. Rudnicki and Rice (1975) studied plastic flow
localization for non-porous pressure-sensitive materials and demonstrated the influence of
non-normality on localization. In this paper. we also model the plastic non-normality of
the pressure-sensitive matrices by a plastic potential function which is different from the
yield function. This plastic potential function is obtained by replacing the pressure sensitivity
factor in the yield function with the dilatancy factor and then finding a fictitious flow stress
such that the current stress state is located on the plastic potential surface in the stress space.
Based on the plastic potential function and the plastic work equivalence, the normality and
non-normalIty flow rules can be formulated. ~ote that the volume increase or lack of
volume increase of the pressure-sensitive matrices, as determined by either normality or
non-normality, plays an important role in void growth. This will be detailed later.

Finally. we present the elastic relation. an evolution rule for the plastic behavior of the
matrices, the consistency equation and the void volume evolution equation to complete a set
ofconstitutive relations for porous solids with rate-dependent pressure-sensitive matrices. It
is well known that some polymers show strain softening and subsequent hardening behavior,
for example, see Haward (1973. 1993), as well as strain-rate sensitivity, for example, see
Bowden (1973) and Vee and Pearson (1986) Motivated by the experimental results of
strain-rate sensitivity in a power-law form for poly(vinyl chloride) and high density poly­
ethylene (G'Sell and Jonas, 1979), we take a simple power law to model the material strain­
rate sensitivity from the phenomenological viewpoint. Moreover. we propose an evolution
equation for the average flow stress of the matrix with the initial strain softening and
subsequent hardening. After we formulate a complete set of constitutive relations, we
examine the shear localization due to void volume inhomogeneity for three deformation
modes: plane strain tension. axisymmetric tension and plane stress biaxial loading. In our
localization analysis, we try to achieve two limited research goals. First, we examine the
implications of the pressure sensitivity. plastic dilatancy, and non-normality flow of the
matrix to shear localization, by comparing with the results of the traditional plastic local­
ization analyses for porous solids with power-law strain hardening, pressure-insensitive,
incompressible matrices. Secondly. we examine the implication of the initial strain softening
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Fig. tal A spherical thick-walled shell model. (h) A voided cube model.

to shear localization. It should be noted that the subsequent strain harden,ing behavior
stabilizes flow .localization in polymers, for example, see G'Sell and Jonas' (\ 979). The
numerical results under the three deformation modes are presented and discussed.

2. A MACROSCOPIC YIELD CRITERION

We idealize a porous material as an isotropic pressure-sensitive matrix containing a
periodic array of spherical voids. Then we can model the porous material approximately
as an aggregate of spherical thick-walled shells or exactly as an aggregate of voided cubes,
shown in Fig. I. The cube model is more realistic than the shell model not only because it
can fill all of the space of the porous material but also because it can be used to take into
account the interaction between voids. In order to construct a macroscopic yield criterion,
we tentatively assume that the matrix is rigid-perfectly plastic. We also assume that the
pressure sensitivity factor of the matrix is independent of the amount of plastic deformation.

As discussed by Spitzig et al. (1975, 1976), Sternstein and Ongchin (1969), and Spitzig
and Richmond (1979), the pressure-sensitive yielding of the matrix can be modeled by
Coulomb's yield criterion as

(1)

where fl is the pressure sensitivity factor, To is the generalized shear flow stress, and fl' and
(Jo are )3 fl and j3 To. respectively. The effective shear stress T,,, the effective tensile stress
(Je and the mean stress (J", are given as
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(J", = j(J : I,

(J' = (J-(J",I,
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(2)

where (J is the Cauchy stress tensor, (J' is the deviatoric stress tensor, I is the identity tensor
and ":" denotes the scalar product of two tensors.

Since the matrix is assumed to be perfectly plastic in this section, the generalized shear
flow stress '0 and the generalized tensile flow stress (J 0 are constant throughout plastic
deformation. Note that Coulomb's yield criterion in eqn (1) reduces to the von Mises yield
criterion when J1 becomes zero. For several steels (HY-80, maraging, 4310 and 4330 steels),
Spitzig et al. (1975, 1976) showed that the values of J1 lie between 0.014 and 0.064. For
polymers, Kinloch and Young (1983) reported that the values of J1 lie between 0.10 and
0.25. For zirconia-containing ceramics, Chen (1991) showed that the values of J1 for phase
transformation are 0.55 and 0.77 for Mg-PSZ and Ce-TZP, respectively. Yu and Shetty
(1989) reported that the value of J1 for phase transformation can go up to 0.93 for Ce-TZP.

Inclusions, microvoids or microcracks, even in a pressure-insensitive matrix, result in
macroscopically pressure-sensitive yielding. Idealizing a porous material as a spherical
thick-walled shell shown in Fig. l(a), Gurson (1975, 1977) carried out an upper bound
analysis and suggested an approximate yield criterion for a porous material of which the
matrix is pressure-insensitive:

(~e)C (3~",) )<1>c;(1:, (Ju,f) = - +2fcosh -2. - I -f- = 0,
ao (Jo

(3)

wherefis the void volume fraction of the porous material and 1: is the macroscopic Cauchy
stress acting on the porous material. In eqn (3), ~c and ~'" are the macroscopic effective
tensile stress and the macroscopic hydrostatic stress, respectively, which are defined as

~",=~1::L

:E' = :E - ~,,,I,

~ = (~:E)I C
, 2 (4)

where 1:' represents the macroscopic deviatoric Cauchy stress.
Since a kinematically admissible velocity field satisfying plastic normality has not been

found for a spherical thick-walled shell of which the matrix is pressure-sensitive, the upper
bound approach of Gurson (1975, 1977) cannot be followed here. Instead, we employ the
equilibrium equation and Coulomb's yield criterion, and derive the hydrostatic yield stress
(~m)\ for the spherical thick-walled shell under fully yielded conditions as

(J

(~ ). = --" (I - el' ltCI')
III I f1!. . (5)

, ,

The detailed derivation is given in Appendix I. When J1 becomes zero, (~m), given in eqn
(5) equals -~(Ju log!: which is the same hydrostatic yield stress as that of Gurson's yield
criterion under purely hydrostatic stress.

The macroscopic yield criterion for porous solids with pressure-sensitive matrices
should reduce to Gurson's yield criterion in eqn (3) when the matrices becomes pressure­
insensitive, and it should reduce to Coulomb's yield criterion in eqn (I) when the void
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volume fraction of the porous solids becomes zero. The macroscopic yield critenon under
purely hydrostatic stress should also give a hydrostatic yield stress very close to (Lm ), given
in eqn (5). Based on these requirements, we suggest the following yield criterion:

(6)

With resort to L'Hospitars rule, the yield criterion <D/ can be shown to become Gurson's
yield criterion as Ii approaches zero. Obviously, the yield criterion <D/ reduces to Coulomb's
yield criterion whenl is zero.

However, the yield criterion <D/, a generalized version of Gurson's yield criterion, does
not adequately include the effect of the interaction between voids, especially at large void
volume fractions. This is not unexpected because Gurson's yield criterion in eqn (3) and
the hydrostatic yield stress given in eqn (5) were obtained for the spherical thick-walled
shell model. not for the cube model. [n order to compensate for the error due to void
interaction in the yield criterion <D/, finite element computations for the cube model shown
in Fig. I (b) are performed by using ABAQUS (Hibbitt et aI., 1992). Because the loading
we consider here is axisymmetric and the shape of the cube is symmetric, it is sufficient to
analyse only one-sixteenth of the cube, as in Hom and McMeeking (1989).

All faces of this part of the cube are constrained to have zero normal displacements
except the right-side and top faces which have uniform normal displacements. The void
surface of the part is specified to have zero traction. The matrix of the cube is modeled as
an elastic perfectly plastic material with Poisson's ratio v of 0.3 and the ratio of the
generalized tensile flow stress V u to Young's modulus E, vjE, of 2 x 10 7. With a small
val ue of v,. E, the matrix behavior becomes almost rigid-perfectly plastic. The finite element
model consists of 1015 C3D8R elements (8 node elements with a reduced integration
scheme) and 1344 nodal points. The macroscopic effective tensile stress L" and the macro­
scopic hydrostatic stress Lm are determined at the load where massive plastic deformation
occurs, These two invariants, after being normalized by v"' are shown by the open symbols
in Fig. 2 for several initial void volume fractions U = 0.0 1,0.05,0.10 and 0.20) and pressure
sensitivity factors (J..l = 0.0, O. L 0.2 and 0.3). The ranges of these parameters were chosen
to represent those for typical rubber-toughened plastics.

Tvergaard (1981, 1982) introduced three parameters (q I = 1.5, qe = 1.0 and qj = 2.25)
into Gurson's yield criterion by comparing the plastic flow localization results of his finite
element computations with those of a continuum model based on Gurson's yield criterion.
To obtain the best fit to our finite element results, we include three parameters qj = 1.35,
(Ie = 0.95 and q, = 1.35 in the yield criterion <D/ and arrive at a new yield criterion <D:

(7)

It should be noted that the values of our '/1' iI' and q; are different from those of Tvergaard.
We show the yield criterion <D by the curves in Fig. 2, along with the open symbols

from the finite element results. We also show the hydrostatic yield stress (Lm ), given by eqn
(5) by the solid symbols in the figure. Since the yield criterion <D/ under purely hydrostatic
stress gives a value very close to the hydrostatic yield stress (Lm)r' the difference between
the yield criterion <D under purely hydrostatic stress and (L III ) , is the amount of correction
resulting from the parameters ql' q: and if<. Note that the yield criterion <D is in good
agreement with the finite element results for a wide range of void volume fractions and
pressure sensitivity factors. However. the yield criterion <D is not applicable to a negative
hydrostatic stress state.
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In order to establish the plastic flow rule, a plastic potential function needs to be
defined. As discussed in Appendix 2, a plastic potential function in eqn (A 18) for a pressure­
sensitive matrix is obtained by replacing the pressure sensitivity factor /1 in Coulomb's yield
criterion in eqn (A 14) with the dilatancy factor fJ and finding a fictitious generalized shear
flow stress II' such that the current stress state is located on the plastic potential surface in
the stress space. The yield criterion <1> in eqn (7) is assumed to be valid through plastic
deformation. Then a plastic potential function for a porous material, <1>p(L, (Jp,}; fJ'), can be
obtained in the same way from the yield criterion <1>(L, (Ja,}: /1') by replacing /1' with fJ' and

finding a fictitious generalized tensile flow stress (J p' Here, fJ' is )3fJ.
The yield function and the plastic potential function are schematically drawn in Fig.

3, where dP represents the plastic part of the rate of deformation tensor of the matrix, IY'
represents the plastic part of the rate of deformation tensor of the porous material, ')~ is the
effective shear plastic strain rate of the matrix, D~ is the effective tensile plastic strain rate
of the porous material, and "tr" denotes the trace of a tensor. When II (or /1') is equal to fJ
(or f3'), the plastic potential function becomes the same as the corresponding yield criterion
and plastic normality occurs. It should be noted that other forms of plastic potential
functions for porous solids with rate-dependent pressure-insensitive matrices are given and
discussed in Haghi and Anand (1992).
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3 CO'-.STITUTIVE RELATIONS
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In this section, the constitutive relations for porous solids with rate-dependent pressure­
sensitive matrices will be formulated based on the macroscopic yield criterion and the
plastic potential function constructed in the previous section. Although the macroscopic
yield criterion and the plastic potential function were derived for porous solids with rate­
independent rigid-perfectly plastic matrices, they are assumed to be approximately valid
for porous solids with rate-depcndent hardening softening matrices.

In general, the rate of deformation tensor, D, can be decomposed into an elastic part
De and a plastic part [)I' :

D = D' -t- Df'. (8)

When the void volume fraction/is too large to be ignored in dctermining the elastic moduli
of a porous material. we employ the self-consistent model with the average stress scheme
of Tandon and Weng (1988). Young's modulus E* and Poisson's ratio v* for a porous
material are derived from Young's modulus E and Poisson's ratio I' of the matrix of the
porous material as
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(9)

(10)

With the elastic moduli E* and \'*. the elastic part Dc is related to the Jaumann rate of the
macroscopic Cauchy stress. t. as

(11)

where L is the elastic modulus tensor of the porous material.
Moreover. the covariant components of the plastic part IY' are related to the partial

derivatives of the plastic potential function et>/, with respect to the corresponding con­
travariant components of the macroscopic Cauchy stress tensor 1: as

(12)

where A is a proportionality factor. In this paper. Latin indices range from 1 to 3 and
Greek indices range from I to 2. and summation convention is adopted for repeated indices.
The equivalent plastic work rate expression for a porous material is (see Appendix 2)
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(13)

where (JI' is a fictitious generalized tensile flow stress of the matrix and f;~ is the effective
tensile plastic strain rate of the matrix. Combining eqns (12) and (13) gives the pro­
portionality factor Aas

Substituting eqns (II) and (12) into eqn (8) results in

t=L:D-Ap,

where

(14)

(15)

(16)

Some polymers show intrinsic strain softening and subsequent hardening behavior
(Haward, 1973, 1993) as well as strain-rate sensitivity (Bowden, 1973; Yee and Pearson,
1986). G'Sell and Jonas (1979) showed the strain-rate dependence in a power-law form for
poly(vinyl chloride) and high density polyethylene. We take this simple power law with the
strain-rate hardening exponent m:

L
(J JI!II./ - (I

I., -I., ~(Cn (17)

where I:, is the reference tensile plastic strain rate, and the function q(8~) equals the gen­
eralized tensile flow stress (Jo of the matrix when e~: = e,. The form of g(8~) given by G'Sell
and Jonas is g(I;~:) = Kexp (M£~:2), where K and M are material constants. The rate sen­
sitivities for the two materials are in the range of 0.02-0.06 and playa relatively minor role
in flow localization (G'Sell and Jonas, 1979).

The model materials that we work with are epoxies. It should be noted that there are
many different epoxies. A variety of the stress-strain behaviors, from extremely brittle to
fairly ductile, can be obtained by varying the chemical composition and processing
conditions. For example, the epoxy of Yee and Pearson (1986) does yield and exhibits
intrinsic strain softening in tensile tests. Kinloch et al. (1987) obtained the stress-strain
curves of epoxies up to strain of 0.75 by plane strain compression tests. Huang and Kinloch
(1992) also titted an experimental stress-strain curve of epoxies by a piecewise curve to
catch the strain softening and subseq uent hardening behavior of epoxies up to strain of O. 75.
Huang and Kinloch ( 1992) used the piecewise stress-strain curve to study the deformation
pattern of the matrix in rubber-modified epoxies. Here, we propose a function for g(£~) to
model the initial strain softening and subsequent hardening behavior at large plastic strains
for plastics. This function g(£~) has the hardening exponent N, the softening-hardening
exponent iV

"
and two coefficients C 1 and C2 as

(18)

Here, (J, is ,>/ 3I
"

where I, is the yield stress in shear at the reference shear plastic strain
rate ),.( = v!3t,L and I:, is (J,IE. When C 1 is equal to zero, eqn (18) reduces to the usual



"" macroscopic constitutive 1,,\\ 3679

power-law strain hardening relation. One can fit an experimental stress-strain curve by
varying the values of N, N]. C] and C c.

lt should be noted that the deformation of the matrix in a unit cell model is not
uniform. As in the work of Gurson (1975, 1(77), a" and i:;: on the right hand side of eqn
(13) represent the average flow stress and plastic strain rate of the matrix for evaluation of
the macroscopic plastic dissipation rate'. Equation (18) is merely a convenient form to
represent the average flow stress of the matrix. including the intrinsic strain softening and
subsequent hardening behavior of plastics, so that we can qualitatively understand the
effect of the strain softening on flow localization. For poly(vinyl chloride) and high density
polyethylene, g(c;;:) = K exp (/'vli() with the corresponding material constants should be
adopted from the phenomenological viewpoint. A three-dimensional constitutive law was
given by Boyce ('{ 01. (1988) for glassy polymers based on the macromolecular structure
and micromechanisms of plastic flow. Their constitutive law can take into account the
strain rate, temperature, and pressure dependence of the plastic behavior ofglassy polymers.
It is possible that their model can be adopted to give the relation of the average flow stress,
plastic strain and plastic strain rate of the matrix in an approximate sense with some
assumption of the dependence of the average back stress tensor on the average deformation
of the matrix. The material constants for their model are available for poly(methyl meth­
acrylate) (PMMA).

The increase of the void volume fraction arises from the growth of existing voids and
from the nucleation of voids. The plastic dilatancy of the pressure-sensitive matrix sup­
presses the void growth that would occur without it by (I -f)/3'i;;:. Thus. it plays an
important role in void growth. as we pointed out earlier. For the nucleation of voids, we
adopt two models: one is the plastic strain controlled nucleation model suggested by
Gurson (1975, 1977) based on Gurland's experimental data (1972), and the other is the
stress controlled nucleation model discussed in Argon and 1m (1975). Chu and Needleman
(1980) used the normal distributions to implement these nucleation models. Therefore, the
increase rate of the void volume fraction can be expressed as

where

(19)

B= tHo ,. l I. (.a,,+Lm-UV")C-j- CXp - ,- --

\a, 'v :'.n ~ sa, /
for (20)

Here. II and./H are the volume fractions of void nucleating particles for the plastic strain
controlled nucleation model and the stress controlled nucleation model, respectively, s is
the standard deviation, and i:\ and a, are the mean values of the normal distributions. A
or B has a non-zero value only when f;;: or (J"+L,,, becomes larger than its maximum value
occurring in the prior deformation history.

Moreover. the consistency condition which holds during plastic deformation requires

(21 )

In summary. eqns (15). (17) (ISl) and (21) describe the constitutive behavior of porous
solids with rate-dependent pressure-sensitive matrices.
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4. PLASTIC FLOW LOCALIZATION ANALYSIS

A Lagrangian formulation is employed with reference to the initial undeformed con­
figuration. In addition, the coordinates of a material point relative to a fixed Cartesian
frame in the undeformed configuration are taken as the convected coordinates. Therefore,
the current base vectors g, can be expressed in terms of the deformation gradient tensor F
and the reference base vectors gj as

(22)

The metric tensors in the reference configuration and in the current configuration are
denoted by g,! and /10, respectively, and the corresponding conjugate metric tensors are gU
and /T, respectively. The determinants of the metric tensors are denoted by g and g.

We employ the tangent modulus procedure of Peirce et al. (1984) to integrate the
constitutive relation in egn (15). Using the relation of the Jaumann rate of the Cauchy
stress, t, to the convected rate of the Kirchhoff stress, t, and the relation of the rate of
deformation D to the Lagrangian strain rate 6, we can rewrite the constitutive relation (15)
as

(23)

where (un and Plan are the modified tensors of Land P. Detailed derivations can be found
in our previous work (Jeong and Pan, 1992). For plane stress problems where t 3

' = 0, the
constitutive relation in egn (23) becomes

(24)

In this plastic flow localization analysis, a thin imperfection band is assumed to exist
in a material element. as shown in Fig. 4. In addition, homogeneous deformation is assumed
to take place inside and outside the band throughout a deformation history. In this paper,
we consider three deformation modes: plane strain tension, axisymmetric tension and plane
stress biaxial loading. The deformation modes are imposed such that the Xl, x 2 and x 3 axes
remain to be the principal directions. The principal values associated with the 1, 2 and 3

IMPERFECTION
BAND

: 9;
..::::r='"'::::::: ,::::::::::::: :::::::::::::

,,ii'
,;::/

n

Fig. 4. A solid element having an imperfection band.
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directions are denoted by ( )" ( )11 and ( )11" respectively. Furthermore, a superscript or
subscript "b" represents a quantity inside the band, whereas a superscript or subscript "0"

represents a quantity outside the band. Under plane strain tension, F~Il is equal to zero and
F~, is chosen such that !i'l vanishes. Under axisymmetric tension, F~l = f'~ll with
!~l = !~ll = O. These boundary conditions for plane strain tension and axisymmetric tension
were originally considered by Yamamoto (1978). In simulating thin sheets under biaxial
loading, a plane stress state (L~1l = Li'll = 0) is assumed both inside and outside the band.
Only proportional straining paths are considered here, and the strain ratio outside the band
p (= r;i' /i:;~I' where c;i' = log Fi' and f;~l = log F~l) is prescribed to be a constant throughout a
deformation history.

As deformation proceeds, compatibility (Hill, 1962: Rice, 1976) across the imper­
fection band interface requires

(25)

where c is a vector denoting the discontinuity across the band, 0 is a normal vector to the
band in the undeformed configuration and" ®" denotes a tensor product. In addition to
the compatibility, equilibrium requires that traction be continuous across the band interface.
The equilibrium equation can be expressed in terms of the first Piola-Kirchhoff stress S
and the normal vector 0 as

""Sf> = o'S" with S = F I ·T. (26)

By combining the rate form of the compatibility eqn (25), the rate form of the
equilibrium eqn (26) and the constitutive relation (23), a set of equations for c is obtained
as

(L-,UPFI F" + T'P /<I) '. - . (}-; GI\' p'k ) - (FI !--I-I\' p'k )til tan .k I ,q /,l1 p('I- l1 ikyg,g tan h tI, .kvg/g tan 0

+ 11 (L'kIPF' F'{+T'l'ql'l) to -tl(L'kIPF' Fq+T'pqiq) to (27)
I tan ,k.l . () qp I tan .k.l ,h tiP' ,

Similarly, a set of equations for c under plane stress biaxial loading can be obtained.
From the prescribed deformation history outside the band Fo and the initial conditions,

the set of eqns (27) for c can be solved incrementally to determine the deformation history
inside the band. Localization is said to occur when the ratio of the strain rate inside the
band to the corresponding strain rate outside the band becomes unbounded.

5. NUMERICAL RESULTS

In this section, we analyse the effects of pressure sensitivity, plastic dilatancy and strain
softening on plastic flow localization. First, we take E = 3000 MPa, v = 0.4, (Jy = 75 MPa
and m = 0.035 based on the material properties of the epoxy of Yee and Pearson (1986).
We take a softening hardening case with N = 0.1. N I = 1.3, C] = 0.03 and C 2 = 0.05.
Then we take a power-law strain hardening case with N = 0.1 and C I = 0 as the reference
case. These two curves at f;:: = I:,. = 0.0032 s-I are shown in Fig. 5, where curve (a) represents
the power-law strain hardening case and curve (b) represents the softening-hardening case.
It should be noted that the general trend of curve (b) is quite close to those stress-strain
curves of epoxies shown in Kinloch et al. (1987) and Huang and Kinloch (1992). Certainly
one can adjust the parameters in eqn (18) or using other curve fitting functions to fit the
strain softening and subsequent hardening behavior of plastics. Curve (b) in Fig. 5 shows
a positive curvature at large plastic strains. This positive curvature is associated with the
stabilization of flow localization, for example, see G'Sell and Jonas (1979). The strain
softening of curve (b) shown in Fig. 5 cannot only affect the flow localization of the matrix
in rubber-modified plastics from the microscopic viewpoint (Huang and Kinloch, 1992)
but also affect the flow localization of the rubber-modified plastics as continua from the
macroscopic viewpoint as we examine here.
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Fig. 5. Two representative stress-strain curves: (a) a power-law strain hardening curve for N = 0.1

and C, = 0: (b) a softening-hardening curve for N = 0.1, N, = 1.3, C, = 0.03 and C, = 0.05.

According to Yee and Pearson (1986), the rubber particles in rubber-modified plastics
become cavitated before noticeable plastic deformation. The rubber particles can be treated
approximately as voids when plastic deformation occurs in rubber-modified plastics. Typi­
cal volume fractions of the rubber particles in plastics range from 5 to 20%. We denote the
initial void volume fraction outside the band by fa and the initial void volume fraction
inside the band bYf;,. We takefa = 0.10 andf~ = 0.1 I for most of our numerical examples.
In this paper, we consider no nucleation of voids and we prescribe FUFf as B,. Although
we select the material properties of a representative rubber-modified plastic for our numeri­
cal examples, the constitutive relations and formulations for plastic flow localization in the
previous sections are general and applicable to other rubber-modified plastics with the
corresponding constitutive relations of the matrices.

With a pressure sensitivity factor J1. and a dilatancy factor [3, localization strains are
computed for various initial band angles 0,. For example, for the power-law strain hardening
case with Ii = [3 = 0 under plane strain tension, Fig. 6 shows the logarithmic axial strains
eloc outside the band at localization as functions of the initial band angle 0, and the
corresponding current band angle 0,. The minimum of these curves gives the critical
localization strain e~r at which the inception of localization is first possible. The critical

1.0

0.8

0.6

0 .•

0.2

--6;
·······6,

...............,

.............
" " ..............---- .

0.0
o 10 20 30

()
50 60

Fig. 6 Localization strains c:'~ as functions of the initial band angle (), and the current band angle
II, under plane strain tension fort:, = 0.10.(" = 0.11, N = 0, I, C, = 0, j.I. = 0 and f3 = o.
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Fig. 7. Critical locahzation strains f,,' under plane strain tension and axisymmetric tension for
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localization strains for the power-law strain hardening case are plotted in Fig. 7 as functions
of Ii. In this figure. the lower three curves are for plane strain tension and the upper three
curves are for axisymmetric tension. Only under plane strain tension with normality, the
critical localization strain increases slightly as the pressure sensitivity factor increases. This
is due to the volume increase of the matrix and the consequent suppression of the growth
of voids. However, under plane strain tension with non-normality (13 = aand 13 = 11/2). the
critical localization strain decreases as the pressure sensitivity factor increases. Under
axisymmetric tension, the critical localization strain decreases significantly as the pressure
sensitivity increases. The plastic dilatancy of the matrix, however, has only a slight influence
on localization.

Under plane strain tension and axisymmetric tension, the difference of the critical
localization strains for normality and for non-normality increases as the initial void volume
fraction decreases. For example, whenj;, = 0.01 andf~ = 0.02. 8¥f = 0.481 for I.l = fJ = 0.3
and <;fr = 0.344 for I.l = 0.3 and fJ = 0 under plane strain tension; <;fr = 1.274 for 11 = f3 = 0.1
and ;;fr = 1.397 for II = 0.1 and Ii = 0 under axisymmetric tension. It should be noted that
for a small pressure sensitivity factor, say 11 = 0.1, the influence of plastic non-normality
on the critical localization strain is opposite under plane strain tension and axisymmetric
tension. as shown in Fig. 7: non-normality promotes localization under plane strain tension,
whereas it delays localization under axisymmetric tension.

In the normalized coordinate system shown in Fig. 2. the load-carrying capacity of the
porous solids decreases as the pressure sensitivity of the matrices increases and/or the void
volume fraction of the porous solids increases. Furthermore, as schematically illustrated in
Fig. 2, when normality applies, the pressure sen~itivity of the matrices results in a larger
dilatancy factor for the porous solids, tr(IY')/(V 3D;:), when the ratio L",/Lc is moderately
small. The non-normality of the matrices results in less macroscopic plastic dilatancy, as
shown in Fig. 3(b). when the ratio L",jL" is moderately small. In addition. the plastic
dilatancy of the pressure-sensitive matrices gives the volume increase of the matrices, which
suppresses the growth of the existing voids. The competition of these factors under different
deformation modes gives the trends shown in Fig. 7.

For the softening- hardening case with 11 = Ii = 0, the logarithmic axial strains 8:oC

exhibit a double-branch behavior, as shown in Figs 8 and 9 for plane strain tension and
axisymmetric tension. respectively. The initial imperfection !1l (= fh~.t;,) is 0.01 for the
plane strain tension results and 0.03 for the axisymmetric tension results. In these figures,
as the initial band angle increases from 0, the localization strain decreases slightly and
increases. At certain initial band angles, however, the localization strain drops to a very
small value and then increases abruptly. As the initial imperfection !1fdecreases, the lower
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Fig. 9. Localization strains f\'" as functions of the initial band angle B, and the current band angle
ii, under axisymmetric tension for I, = 0.10, fh = 0.13, N = 0.1, N, = 1.3, C, = 003, C, = 0.05,

J1 = 0 and fi = O.

plateau narrows and finally disappears for the values of tlfslightly smaller than 0,001 under
plane strain tension and 0,030 under axisymmetric tension, Examining the cases with
different values of f.1 and f3 for the softening-hardening stress-strain behavior, we found
that the critical localization strains occurring in the lower plateau are almost independent
of the pressure sensitivity and plastic dilatancy. These results indicate that the strain
softening has a dominant role in localization as long as the amount of initial imperfection
is moderate. Especially under plane strain tension, localization is almost sure to occur near
the intrinsic strain softening point, since a very small initial imperfection tlf = 0,001 can
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exist in materials. The double-branch localization phenomenon also occurs in a rate­
independent approach with a stress controlled nucleation model, as reported in Saje et al.
(1982).

Under plane stress biaxial loading, the critical localization strains define a forming limit
diagram. Figure 10 shows the forming limit diagram for the power-law strain hardening case
with normality. For a given fl, the critical localization strain has a minimum around p = 0
(in-plane plane strain tension). and the critical localization strain increases as p increases
to I (biaxial tension) and as p decreases to -0.5. The results shown in Fig. 10 indicate that
the pressure-sensitive yielding of the matrix retards localized necking. This effect is especially
large for p close to I and - 0.5. However, for the power-law strain hardening case with
non-normality of Ii = 0, the results shown in Fig. II indicate that the pressure-sensitive
yielding of the matrix does not dramatically affect localized necking; it retards localized
necking slightly for positive p, but it promotes localized necking slightly for negative p. For
the softening-hardening case with a small initial imperfection AI = 0.0 I, the results shown
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Fig. I I. Forming limit diagram with the assumption of non-normality for!;, = 0.1 O. f~ = 0.11,
N=O.landC=O.
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in Fig. 12 indicate that small critical localization strains occur except for p close to I. With
a slightly larger initial imperfection, for example, ,4"f = 0.03, very small critical localization
strains occur near the intrinsic strain softening point for all p, and the small critical
localization strains do not change significantly as the pressure sensitivity or dilatancy factor
varies. Similar to plane strain tension and axisymmetric tension cases, the strain softening
has a dominant role in localized necking as long as the initial imperfection exceeds a critical
value.

6. CONCLCSIONS AND DISCUSSION

We have formulated a set ofconstitutive relations for porous solids with rate-dependent
pressure-sensitive matrices. Based on the constitutive relations, plastic flow localization has
been analysed for porous solids with various pressure-sensitive dilatant matrices with
power-law strain hardening or with intrinsic strain softening under plane strain tension,
axisymmetric tension and plane stress biaxial loading.

Under plane strain tension, the pressure-sensitive yielding of the matrix with normality
retards plastic flow localization slightly, but the pressure-sensitive yielding of the matrix
with non-normality of f3 = 0 gives early plastic flow localization. This means that under
plane strain tension, the plastic dilatancy of the matrix plays a major role in plastic flow
localization and its influence, for example, when normality occurs, overcomes the effect of
the reduction of the load-carrying capacity due to the pressure-sensitive yielding of the
matrix. Under axisymmetric tension, however, the pressure-sensitive yielding of the matrix
promotes plastic flow localization significantly, but the plastic dilatancy of the matrix does
not affect localization as much as the pressure-sensitive yielding of the matrix does. In
contrast to the plane strain tension case, the reduction of the load-carrying capacity due to
the pressure-sensitive yielding of the matrix plays a major role in plastic flow localization
under axisymmetric tension. Cnder plane stress biaxial loading, the pressure-sensitive
yielding of the matrix with normality retards localized necking, but the pressure-sensitive
yielding of the matrix with non-normality of f3 = 0 does not affect localized necking
significantly.

Cnder all three deformation modes, the strain softening coupled with a moderate
amount of initial void volume inhomogeneities gives a double-branch localization behavior,
as shown in Figs Xand 9. This indicates that the strain softening has a dominant effect on
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plastic flow localization, and plastic flow localization occurs near the intrinsic strain soften­
ing point when the initial imperfection exceeds a critical value. It should be noted that the
double-branch behavior in flow localization also occurs when the stress-controlled void
nucleation criterion is employed in the rate-independent analysis of Saje et al. (1982).
However, when material rate sensitivity is considered, the double-branch behavior dis­
appears, although a substantial amount of shear deformation occurs within the band when
the stress-controlled void nucleation takes place (Pan et al., 1983). Here the dominant
strain softening effect coupled with the rapid loss of the load-carrying capacity due to
large void volume fractions overcomes the effects of the material rate sensitivity and
the subsequent strain hardening for flow stabilization. Consequently, the double-branch
behavior appears. The amount of strain softening can affect the critical value of the void
volume fraction for the double-branch behavior. When the amount of strain softening
increases, the critical void volume fraction for the double-branch behavior should decrease.
The detailed stress~strain behavior for the strain softening and the subsequent strain
hardening may also have some influences on the double-branch behavior, but the results
on localization should be qualitatively similar to those presented here. Our results show
that with strain softening it only takes a very small amount of imperfection to induce
localization under plane strain conditions. This may explain the massive shear yielding
ahead of a crack in the rubber-modified epoxy of Pearson and Vee (1991). This massive
yielding ahead of the tip ofa crack has been thought ofas a major mechanism for toughening
in this class of materials.
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APPENDIX I. HYDROSTATIC YIELD STRESS FOR A SPHERICAL THICK-WALLED
SHELL
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Consider the spherical thick-walled shell shown in Fig. I(a), where I' represents the radial distance from the
center, a represents the inner radius and h represents the outer radius of the shell. Suppose that the matrix of the
shell is elastic-perfectly plastic and obeys Coulomb's yield criterion. Suppose also that the shell is subject to a
radial traction L m at I' = h. The linear elastic solutions of the radial stress a" and the hoop stress aoo for the shell
are (Timoshenko and Goodier, 1951)

Lmh'(r' _a')
a =-----

" r 3 (h' _a') ,

Lmh'(2r' +a')
600 =

2r3 (h' _a')

Under spherically symmetric conditions, Coulomb's yield criterion can be written as

(AI)

(A2)

(A3)

Substituting the elastic solutions of the radial stress and hoop stress in eqns (A I) and (A2) into the left side of
eqn (A3), we have

_ ,2aoo + a" _ 2.m h
1

(3a
1

.)
aoo a,,+jl ,- +jl .

- 2(h' -a') 1"
(A4)

The value of eqn (A4) increases as I' decreases. This indicates that plastic deformation should start at the inner
surface of the shell. The plastic zone spreads toward the outer surface with the increase of the radial traction L m .

Here we denote the radial stress at I' = C (a <:;: c <:;: h) as 2.,. when the plastic zone spreads to this radial distance
I' = c. Then the radial stress and hoop stress in the elastic region (c <:;: I' <:;: h) are given as (Timoshenko and
Goodier, 1951)

Lmh'(r' -c') 2.,e'(h' -r')
a" = + for c <:;: I' <:;: h,

r'(h' -e') r'{h' -e')
(AS)

2.mh'{2r' +c')
aO/J =

L,c'(2r' +h')
-----

21" (h' - c')
for c <:;: I' <:;: h. (A6)

For the plastic region (a <:;: I' <:;: c), the boundary conditions are

a" = 0 at r = a,

a" = 2., at I' = c.

The equilibrium equation in the I' direction gives

Da" 2(aoo -a,,)
------or

(A7)

(A8)

(A9)

From eqns (A3), (A7)-(A9), we can obtain the radial and hoop stresses in the plastic region in terms of 2., as

3-jl' 1-(alr)6!' "",,, 3a"
aoo = 'i., --.- +--- for a <:;: r <:;: c,

3+2fl' 1-(alc)6!, 1.1 +2,,) 3+2jl'

(AIO)

(All)
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where :E,. is

H.-Y. Jeong and J. Pan

:E, = ~[I-(a/c)6I'iJ+""l.
p

(AI2)

Once the plastic zone reaches the outer surface of the shell, the shell becomes fully yielded. Replacing c by b
and :E, by (:En,), in eqn (A 12), we obtain the hydrostatic yield stress (:Em), at the fully-yielded state as

(:E",), =~. (1-1'" ,), 21'1),

/I
(AI3)

where j (= (a/h))) denotes the void volume fraction of the spherical shell. Equation (AI3) also represents a
hydrostatic yield stress for a spherical thick-walled shell of which the matrix is rigid-perfectly plastic. The solution
given here is the generalization of the solution for the von Mises yield criterion in Hill (1950).

APPENDIX 2. PLASTIC POTENTIAL AND PLASTIC WORK EQUIVALENCE

For a pressure-sensitive matrix, Coulomb's yield function can be written as

(/) = t, + !W", = r". (AI4)

where cP, represents the yield surface in the stress space. r, represents the effective shear stress, p represents the
pressure sensitivity factor, a", represents the mean stress, and Tn represents the generalized shear flow stress. With
the assumption of normality, the plastic part of the rate of deformation tensor of the matrix, dP, is in the direction
of the outward normal to the yield surface and can be written as

d;: = i.
('a'i

or .(a' p)d/' = i. - + -I ,
2r,. 3

(AI5)

where df, are the covariant components of d/', I. is a proportionality factor, a" are the contravariant components
of the Cauchy stress tensor l1, and a' is the deviatoric Cauchy stress tensor. It is easy to show that

(AI6)

where ); is the effective shear plastic strain rate of the matrix. The plastic dilatancy factor fJ is defined as the ratio
of the volume increase rate tr(dP ) to the effective shear plastic strain rate y{,:

trW) = /N; (AI7)

With the assumption of normality, we can show /i = Ii from eqns (AI5)-(AI7).
From eqns (AI4) and (A 17). a plastic potential function cPr with a plastic dilatancy factor fJ can be defined

as

(AI8)

where TI, can be regarded as a fictitious generalized shear flow stress. In this case. the plastic part of the rate of
deformation tensor. dr. becomes

(AI9)

Moreover, the equivalence of plastic work rate for the matrix can be written as

(A20)

In the work of Gurson (1975. 1977), the macroscopic plastic work rate is assumed to be the plastic work rate
of the matrix in an average sense for a porous material. This assumption in conjunction with eqn (A20) gives

(A21)
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We define (J" = V 3[1" where rTp can he regarded as a fictitious generalized tensile flow stress. Then we can rewrite
eqn (A21) as

1: : !Y' = (I -f)rT/:.

where t:'( = )': /y3) is the etTective tensile plastic strain rate of the matrix

(A22)


